PARALLEL IMPLEMENTATION, VALIDATION, AND
PERFORMANCE OF MMb)5

J. Michalakes, T. Canfield, R. Nanjundiah, and S. Hammond

Mathematics and Computer Science Division,
Argonne National Laboratory,

9700 S. Cass Ave., Argonne, [llinois 60439, U.S.A.

G. Grell

NOAA Forecast Systems Laboratory,
325 Broadway, Boulder, Colorado 80303, U.S.A.

Abstract

We describe a parallel implementation of the nonhydrostatic ver-
sion of the Penn State/NCAR Mesoscale Model, MM5, that includes
nesting capabilities. This version of the model can run on many differ-
ent massively parallel computers (including a cluster of workstations).
The model has been implemented and run on the IBM SP and Intel
multiprocessors using a columnwise decomposition that supports ir-
regularly shaped allocations of the problem to processors. This stategy
will facilitate dynamic load balancing for improved parallel efficiency
and promotes a modular design that simplifies the nesting problem.
All data communication for finite differencing, inter-domain exchange
of data, and I/0 is encapsulated within a parallel library, RSL. Hence,
there are no sends or receives in the parallel model itself. The library
is generalizable to other, similar finite difference approximation codes.
The code is validated by comparing the rate of growth in error between
the sequential and parallel models with the error growth rate when the
sequential model input is perturbed to simulate floating point round-
ing error. Series of runs on increasing numbers of parallel processors
demonstrate that the parallel implementation is efficient and scalable
to large numbers of processors.

1. Introduction

Computer simulation for weather forecasting is computationally demand-
ing, especially at very fine resolutions and over very large domains. Massively
parallel processors and networks of high-performance RISC-based worksta-
tions are a cost-effective and scalable alternative to vector/shared-memory
supercomputing technology for weather forecasting. This paper describes the
distributed-memory parallel implementation of the Fifth-Generation Penn
State/NCAR Mesoscale Model (MM5) for use as a real time weather fore-
casting system for the United States Air Force. We first discuss requirements
for the model and modeling system. Next, we describe the approach to im-
plement the parallel model. This approach employs RSL, a parallel library
package designed to hide low-level details of the parallel implementation and
that is tailored to regular-grid finite-difference codes with mesh refinement.
The parallelized model is validated with respect to the source model by com-
paring model output data plots and by measuring error growth rates in the
source and parallel models. Performance results obtained running the paral-
lel model on an IBM Scalable POWERparallel system are presented.

2. Model and System Requirements

MMS5 is a regional weather model for prediction on domains ranging from
several thousand kilometers down to several hundred (or fewer) kilometers.
The model may be run at a resolution of as low as 1 km. Domains are uniform
rectangular grids representing three-dimensional regions of the atmosphere.
The horizontal coordinate system is equally spaced geographically and the
model uses the Arakawa-B gridding scheme. The vertical coordinate system
is o surfaces, with layers distributed more closely nearer the surface (23 layers
in the current model). For this implementation, atmospheric dynamics is
nonhydrostatic and uses finite-difference approximation. Physics includes
the Blackadar high-resolution planetary boundary layer scheme, the Grell
cumulus scheme, explicit moisture with treatment of mixed-phase processes
(ice), shallow convection, dry convective adjustment, and the Dudhia long-
and short-wave radiation scheme [1].

*This work was supported by the Applied Mathematical Sciences subprogram of the
Office of Scientific Computing, U.S. Department of Energy, under Contract W-31-109-Eng-
38. Corresponding author: John Michalakes, MCS Division, Argonne National Laboratory,
Argonne, Illinois 60439, U.S.A. Email: michalak@mes.anl. gov.

The requirements of the modeling system are that it provide high resolu-
tion over a very large domain with fast time to solution. A simple model of
computational cost is

1 tsim

T g sec
tsol 3% - T

S = cc- F

where S is the required floating-point operations per second, t,, is the time
to solution in seconds, tg,, is the length of the simulation in seconds, r is the
resolution in kilometers, ¢ is the number of cells in the domain, and F'is the
number of floating-point operations to compute one time step for one cell.
The desired resolution is 10 km over a square geographical domain that is
1500 nautical miles (approximately 2700 km) on an edge. The desired time
to solution for a 36-hour simulation is one hour. Based on a measured 8420
floating-point operations per three-dimensional grid point per time step, the
problem as specified is essentially intractable, requiring a sustained compu-
tational rate of 17 billion floating-point operations per second. Therefore, we
employ mesh refinement in the parallel model to focus the more costly 10 km
resolution over a much smaller area of interest. Within the larger 2700 km
by 2700 km domain, we instantiate a 10 km nested domain covering an area
about 500 km on an edge. The rest of the larger domain is calculated at 30
km resolution, reducing the computational requirements for the large domain
by a factor of 27 (9-fold fewer cells, and a 3-fold increase in the length of the
time step, based on the MM5’s nesting ratio of 3). This sacrifice of resolution
over some of the original domain reduces the performance requirement to 760
million floating-point operations per second, a considerable savings.

3. Parallelization

Parallel efficiency is the degree to which a program achieves ideal speedup:
an increase in computational speed proportional to the number of processors.
A number of factors including load imbalance and communication overhead
affect parallel efficiency. Load imbalance is an uneven distribution of work
between processors, which causes less heavily loaded processors to reach a
synchronization point in the code sooner and then wait for more heavily
loaded processors. Load imbalance can be corrected by moving work be-
tween processors, as long as the cost to redistribute the work and the cost of
possibly increased communication do not outweigh the benefits of the more
efficient distribution. Communication overhead is the cost in time of sending

and receiving messages between processors. Typically, the cost to initiate a
message is equivalent to the cost to send hundreds of four-byte words once
startup has occurred. This is fairly high latency. Therefore, there is an
advantage to sending messages that are as large as possible, by blocking
(aggregating) into single messages smaller messages that can be sent at the
same time. Communication cost can also be improved by using asynchronous
communication. Processors need stop only to initiate a send or a receive and
may then go forward with computation that does not depend on the data
that is being communicated. Thus, at least some of the cost is hidden by
doing useful work at the same time.

Message-passing code and the additional code required to block messages
into large buffers, to hide communication cost with asynchronous messages,
and to redistribute work for load balancing increase the complexity of writ-
ing parallel codes. Compilers that can automatically parallelize codes for
distributed-memory computers are a potentially important future technology,
but not one that is workable at the present time. Therefore, data movement
between processors in an massively parallel processor (MPP) or a cluster of
workstations must, at some level, be explicitly coded using send, receive, and
other system calls that implement message passing on the parallel machine.
The coding process is manual and therefore more prone to error; it may also
introduce machine dependencies that hinder portability; and it certainly in-
troduces distributed-memory-specific code. The RSL library on which the
parallel MM5 is implemented addresses these problems by encapsulating low-
level messaging operations within higher-level functions that are specific to
the application.

3.1 RSL

RSL is a run-time system and library to support parallelization of grid-
based finite-difference weather models with a large nondynamic computa-
tional component (physics) and supporting mesh refinement. The RSL in-
terface to the parallel machine is abstract and high level, thereby simpli-
fying the programming task. All details of the underlying message passing
— buffer allocation, copying, routing, and more complicated tasks such as
asynchronous communication — are encapsulated within high-level routines
for stencil exchange or moving forcing data between domains for nesting.

By focusing on a type of application, RSL can be lightweight and effi-

cient, imposing little additional overhead or wasted capability. Intra-domain
communication (messages required to satisfy data dependencies arising from
stencils for finite differencing and interpolation on a horizontally decomposed
domain) and inter-domain communication (messages required to communica-
tion forcing data between domains, i.e., between a parent domain and a nest)
are specified abstractly as stencils and broadcast/merges, which RSL converts
to the appropriate low-level communications between processors. RSL em-
ploys a technique called run-time compilation of communication schedules.
Once a stencil is defined by specitying the model variables and stencil points
involved for a transfer, the stencil is then compiled. During stencil com-
pilation, RSL precomputes the interprocessor communication schedule (i.e.,
the sequence and contents of messages) to satisfy the stencil. Thus, when
the exchange occurs during the model run, very little additional overhead is
required to pack and deterministically exchange messages between the pro-
CESSOrs.

RSL supports a logical view of the model domain as an aggregation of
column processes, each of which is a one-dimensional (vertical) expression of
the model code for a single 7, 7 mesh point. Expressed in this way, the model
is said to be column callable. The columnwise expression of the model is
more natural with respect to model column-physics, and it supports a more
modular approach to mesh refinement via nesting. It also provides for small
units of work (single columns) and allows for irregularly shaped allocations
of work to processors, thereby facilitating load balancing.

Additional information on RSL can be found in [3].

3.2 Parallel MM5

Figure 1 illustrates the top-level structure of the parallel model once the
code has been converted so that the model may be called separately for each
column of the grid. At the start of a new time step, data is exchanged in
the call to RSL_LEXCH_STENCIL using the communication schedule that
was previously defined and run-time-compiled for the stencil sten_a. This
satisfies the horizontal data dependencies by updating ghost regions around
the processor’s local partition of data, which may be irregularly shaped.
Next, RSL_LCOMPUTE_CELLS is called and applies the first phase (solve_a)
of the model computation to each locally stored grid cell. The RSL exchange
and compute cells are called in pairs for each phase in the computation

computation on a domain

Top level of parallel model
using RSL

c conputation on coarse donain
call rsl_exch_stencil (domain(1l), sten_a)
call rsl_conpute_cells(domain(1l), solve_a)\/
call rsl_exch_stencil (domain(l), sten_b)
call rsl_conmpute_cells(domain(1l), solve_b) PR e
H 01 H
c force nested boundaries : 1] :
!) 5 5 I I
call rsl_exch_stencil(domain(1l), sten_interp) ! K FiE| + broadcast
' L’ l,‘ K , fromc.d. to
call rsl_bcast(domain(1), domain(2), nask; : ; associated
cd_fcn, nd_fcn) H LS) the nest
c conputation on nested domain H
do istep =1, 3
call rsl_exch_stencil(domain(2), sten_a)
call rsl_conpute_cells(domain(2) ol a): O O :
s onpute_cel | s i , solve_ ! :
- - : ooo :
.etc... . TTmTmTmmmmmmmmmmmmmmaTaTITs
enddo O0Oog
H ' merge from
¢ force c.d. from nest . O,0y0a : nest back
H :pnto assoc—
call rsl_merge(domain(1), domain(2), mask, ~~—ipg H :ﬁf%_ce"
cd_fcn, nd_fcn) H H

Figure 1: Top level parallel driver for an MM5 time step with nest interac-
tions

for a coarse domain, domain (1), until it is time to provide forcing data to
a nested domain, domain(2). This is accomplished using RSL_BCAST and
appropriate masking and interpolation routines that are passed as arguments.
Data for the nested domain cells is transferred, across processor boundaries
when necessary, and the computation of the time step on the nest begins.
The same sequence RSL of stencil exchanges and compute calls occur, but
with a different domain descriptor. Finally, data is merged back onto the
coarse domain and the computation of the next time step begins.

The example in Figure 1 is simplified to show the relationship between a
parent and a nest. In the actual parallel MM5 code, a stack is maintained to
support a pseudo-recursive approach that permits nesting to arbitrary depth.

4. Validation

The validation effort for the parallel model involved determining that the
model is correct with respect to the original version of the code. The source
model has undergone validation with respect to observed phenomena and is,
for this effort, assumed a priori to be correct.

Side-by-side plots of instantaneous model output fields provide a first
indication of correctness. Figure 2 shows a comparison of the U/V streamline
plot at ground level between the parallel code and the original model after
three hours. All gross structure of the function within the original model is
reproduced in the parallel code.

A more rigorous verification of correctness with respect to the original
model is being conducted using the error-growth analysis technique of Rosin-
ski and Williamson [4]. The technique involves measuring the growth in error
in selected output fields between two runs of the sequential model, in which
the second run has been initialized with data that has been perturbed by
flipping the lowest-order bit in each floating-point value, thereby simulating
the effect of rounding error. This measurement is compared with the error
growth measured between the unperturbed sequential model and the paral-
lel model. If the deviation with the parallel model is similar to that of the
perturbed sequential model, the difference is no worse than what is expected
from floating-point roundoff.

5. Performance

Figure 3 and Table 1 shows the result of a series of runs on the large IBM

\ 7\\‘ _‘;_; ’{’/;l’ﬁ;;‘ W *\:;:

N \ \\2;\:;\\{\%‘(((’&4 v \\;\i\\\ MANW \"’, 4
{;2\\ \\\\ \ “‘ F‘..e] .."'\ \ N ._\ \\, i \ \\’ 7.'5’

/ gl \\\\\ /ll//{// ,‘vﬁxse.<\<(<

\ = /l!“!l 7
e

Al

“ NG
,\gglﬁ.\k\\&\\

O\
-

T

Figure 2: Plots of horizontal wind streamline plot three hours into the simu-
lation (120 time steps) for a parallel MM) run on a cluster of IBM RS/6000
workstations (left) and the original code run on a single RS/6000 workstation

(right)

Scalable POWERparallel system at Argonne and on a 14-processor SP2. The
larger machine is an SP1 with SP2 communication hardware (upgrade of the
machine with SP2 processors is anticipated). It consists of 128 processors,
each the equivalent of an IBM RS/6000 model 370 workstation with a 62.5
MHz clock, a 32-kilobyte data cache and a 32-kilobyte instruction cache.
Theoretical peak performance of each workstation is 125 Mflop/second (one
64-bit floating-point add and one floating-point multiply in each clock cycle).
In practice, each processor can achieve between 15 and 70 Mflop/second on
Fortran codes. Fach processor has 128 Mbytes of memory and 1 Gbyte of
local disk. The message-passing hardware is a high-speed Omega switch pro-
viding 7T0usec latency and 35 Mbytes/second bandwidth [2][5]. The smaller
machine, an SP2 acquired specifically for this project, consists of 14 pro-
cessors, each equivalent to an RS/6000 model 390 workstation, which has

8

Performance

700 T T T T T
SPlsingle -——
SP1 nested -+
600 SP2nested o
Y-MP nested -
500 | - i
. .
§ 400 -
g L
= 300 |+ .
= #
200 | e .
e
/ﬁ‘
100 / :
O 1 1 1 1 1
14 8 14 32 64

Processors

Figure 3: Performance with a 30-kilometer domain (91x91x23) by itself and
with one 10-kilometer nest (52x52x23) on IBM SP1. Also, performance for a
14-processor run of the nested code on the IBM SP2 is shown. The horizontal
line at 118 Mflop/second is the performance of one processor of a Cray Y-MP
on the nested problem.

additional floating-point hardware for better performance.

The model was run with and without a nest. Asexpected, the nested code
runs less efficiently because of the additional cost of interpolation between
domains and because of inter-domain communication in the parallel model.
Nevertheless, the nested code is still the most cost-effective way to achieve
10 km resolution over at least part of the modeled area.

6. Conclusion

The ten-month effort to produce a scalable parallel implementation of a
real-time weather forecasting model has been completed. The model runs ef-
ficiently and generates meteorologically valid data; nesting is used to achieve
high resolution. Future work will address dynamic load-balancing strategies

Table 1: MMD5 performance on a single domain and with one nest on the IBM
SP1, the SP2, and on 1 processor of a Cray Y-MP (shown for comparison).
The performance is shown as seconds per 90-second time step, as the ratio of
simulated time to real time, and as a floating-point rate. The single-domain
problem seemingly exhibits perfect speedup between 1 and 8 processors on
the SP1. In actuality the single-node performance is likely suppressed —
perhaps because of a processor memory /cache effect. The floating-point rates
are computed based on 3175 Mflop/time-step for the nested code and 1604
Mflop/time-step for the single domain code.

| Platform | Procs. | sec/ts | sim:wall | Mflop/sec |
‘ Single domain: 91x91x23, 30 km ‘

IBM SP1 1] 134.0 0.7 12
8 16.7 5.4 96

16 8.5 11.0 188

32 4.5 20.0 356

64 2.5 37.0 652

IBM SP2 1 82.0 1.1 20
14 6.8 13.2 236

91x91x23, 30 km domain with 52x52x23 10 km nest
IBM SP1 41 723 1.2 44
141 235 3.8 135

16 21.0 4.2 151

32 11.5 7.8 276

64 6.4 14.1 496

IBM SP2 14 17.0 5.3 187
Cray 1 26.8 3.4 118

10

that exploit the ability to migrate columns at run time, other performance
tuning to achieve larger percentages of theoretical peak performance on the
individual processors, irregularly shaped and dynamically moving nested do-
mains, tools for automated columnwise decomposition of existing models,
data assimilation, and scalable parallel 1/0O.

Acknowledgements

We acknowledge Ying-Hwa Kuo, Jimy Dudhia, David Gill, and Sue Chen
of the NCAR Mesoscale and Microscale Meteorology Division for providing
the original model, data sets, and expertise. We also acknowledge the con-
tribution of Tan Foster of the Mathematics and Computer Science Division
at Argonne, whose work formed the basis for the current work.

References

[1] G. A. GRELL, J. DUDHIA, AND D. R. STAUFFER, A Description of
the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5), Tech.
Rep. NCAR/TN-3984+STR, National Center for Atmospheric Research,
Boulder, Colorado, June 1994.

2] W. Grorp, E. Lusk, AND S. PIEPER, Users Guide for
the ANL SPz, Tech. Rep. ANL/MCS-TM-198, Mathematics and
Computer Science Division, Argonne National Laboratory, 1994.
(http://www.mcs.anl.gov/spl/guide-r2/guide-r2.html).

[3] J. MICHALAKES, RSL: A Parallel Runtime System Library for Reg-
ular Grid Finite Difference Models Using Multiple Nests, Tech. Rep.
ANL/MCS-TM-197, Mathematics and Computer Science Division, Ar-
gonne National Laboratory, Argonne, Illinois, 1995 (in press).

[4] J. M. RosSINSKI AND D. L. WILLIAMSON, On the accumulation of
rounding errors in a global atmospheric model, NCAR preprint, (1994).

[5] C. B. STUNKEL, D. G. SHEA, D. G. Grice, P. H. HOCHSCHILD,
AND M. Tsao, The SP1 High Performance Switch, in Proceedings of

the Scalable High Performance Computing Conference, IEEE Computer
Society Press, Los Alamitos, California, 1994, pp. 150-156.

11

